Using filtered NDVI time series, scale it to 0-1.

scale_ndvi(DT)

Arguments

DT

data.table of NDVI time series

Value

data.table with appended 'scaled' column of 0-1 scaled NDVI.

Details

This functions expects the input DT is the output of previous four filtering steps, or filter_ndvi.

See also

Other scale: scale_doy()

Examples

# Load data.table
library(data.table)

# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

# Filter and scale NDVI time series
filter_ndvi(ndvi)
#>         id   NDVI SummaryQA DayOfYear    yr  filtered    winter    rolled
#>      <int>  <num>     <num>     <int> <num>     <num>     <num>     <num>
#>   1:     0 0.1864         3        11  2015 0.3076500 0.3076500 0.3076500
#>   2:     1 0.0541         2         3  2015 0.3163400 0.3163400 0.3163400
#>   3:     2 0.1781         3        11  2015 0.2649875 0.2649875 0.2649875
#>   4:     3 0.1024         2         5  2015 0.2301750 0.2301750 0.2301750
#>   5:     4 0.0898         2         3  2015 0.2177150 0.2177150 0.2177150
#>  ---                                                                     
#> 801:     2 0.1179         2       364  2019 0.2649875 0.2649875 0.2649875
#> 802:     3 0.0789         2       364  2019 0.2301750 0.2301750 0.2301750
#> 803:     4 0.1572         2       364  2019 0.2177150 0.2177150 0.2177150
#> 804:     5 0.0763         2       364  2019 0.3163400 0.3163400 0.3163400
#> 805:     6 0.1197         2       362  2019 0.3149325 0.3149325 0.3149325
#>            top
#>          <num>
#>   1: 0.8735000
#>   2: 0.8632175
#>   3: 0.8707500
#>   4: 0.8635525
#>   5: 0.8476000
#>  ---          
#> 801: 0.8707500
#> 802: 0.8635525
#> 803: 0.8476000
#> 804: 0.8632175
#> 805: 0.8632000
scale_ndvi(ndvi)
#>         id   NDVI SummaryQA DayOfYear    yr  filtered    winter    rolled
#>      <int>  <num>     <num>     <int> <num>     <num>     <num>     <num>
#>   1:     0 0.1864         3        11  2015 0.3076500 0.3076500 0.3076500
#>   2:     1 0.0541         2         3  2015 0.3163400 0.3163400 0.3163400
#>   3:     2 0.1781         3        11  2015 0.2649875 0.2649875 0.2649875
#>   4:     3 0.1024         2         5  2015 0.2301750 0.2301750 0.2301750
#>   5:     4 0.0898         2         3  2015 0.2177150 0.2177150 0.2177150
#>  ---                                                                     
#> 801:     2 0.1179         2       364  2019 0.2649875 0.2649875 0.2649875
#> 802:     3 0.0789         2       364  2019 0.2301750 0.2301750 0.2301750
#> 803:     4 0.1572         2       364  2019 0.2177150 0.2177150 0.2177150
#> 804:     5 0.0763         2       364  2019 0.3163400 0.3163400 0.3163400
#> 805:     6 0.1197         2       362  2019 0.3149325 0.3149325 0.3149325
#>            top scaled
#>          <num>  <num>
#>   1: 0.8735000      0
#>   2: 0.8632175      0
#>   3: 0.8707500      0
#>   4: 0.8635525      0
#>   5: 0.8476000      0
#>  ---                 
#> 801: 0.8707500      0
#> 802: 0.8635525      0
#> 803: 0.8476000      0
#> 804: 0.8632175      0
#> 805: 0.8632000      0