Just swap the regions with your own features or points and run!

MODIS MOD13Q1

To access an example script for extracting NDVI from MODIS MOD13Q1 imagery in Earth Engine, run:

use_example_ee_script(sensor = 'MODIS')
// Sample NDVI for IRG - MODIS MOD13Q1
// Example from irg package https://github.com/robitalec/irg
// Alec L. Robitaille

// Functions ===================================================================
function rescaleBands (im) {
  var viBands = im.select(['NDVI', 'EVI']).multiply(0.0001);
  var surfBands = im.select('sur_refl_b0.*').multiply(0.0001);
  var viewBands = im.select(['ViewZenith', 'SolarZenith', 'RelativeAzimuth']).multiply(0.01);

  return(im.addBands(viBands, null, true)
           .addBands(surfBands, null, true)
           .addBands(viewBands, null, true));
}

// Function to grab year from image and add it as a band
function addYear(img) {
  return(img.addBands(ee.Image(img.date().get('year')).rename('yr')));
}

// Function to sample an image in each region of supplied geometry
function sampleRegions (im) {
    return(im.reduceRegions(features, ee.Reducer.mean(), 250)
           .copyProperties(im));
}



// Feature ====================================================================
var features = ee.FeatureCollection(
        [ee.Feature(ee.Geometry.Point([-109.96, 53.853]),
        {"id": "0"}),
        ee.Feature(ee.Geometry.Point([-109.94, 53.852]),
        {"id": "1"}),
        ee.Feature(ee.Geometry.Point([-109.95, 53.851]),
        {"id": "2"}),
        ee.Feature(ee.Geometry.Point([-109.93, 53.854]),
        {"id": "3"}),
        ee.Feature(ee.Geometry.Point([-109.92, 53.853]),
        {"id": "4"}),
        ee.Feature(ee.Geometry.Point([-109.94, 53.852]),
        {"id": "5"}),
        ee.Feature(ee.Geometry.Point([-109.93, 53.851]),
        {"id": "6"})]);


// Images ======================================================================
var modis = ee.ImageCollection('MODIS/006/MOD13Q1');



// Filter ======================================================================
modis = modis.filterDate('2015-01-01', '2020-01-01')
             .filterBounds(features);



// Process images ==============================================================
// Add dates
modis = modis.map(addYear)
             .map(rescaleBands);



// Sample images ===============================================================
var sample = modis.map(sampleRegions)
                  .flatten()
                  .filter(ee.Filter.neq('NDVI', null));



// Export ======================================================================
Export.table.toDrive({
  collection: sample,
  description: 'sampled-ndvi-MODIS-MOD13Q1',
  selectors: ['id', 'NDVI', 'SummaryQA', 'DayOfYear', 'yr']
});

Landsat 8

To access an example script for extracting NDVI from Landsat 8 imagery in Earth Engine, run:

use_example_ee_script(sensor = 'Landsat')
// Sample NDVI for IRG - Landsat
// Example from irg package https://github.com/robitalec/irg
// Alec L. Robitaille

// Functions ===================================================================
// Function to add mask identifying cloud and saturation
// Mask band = if QA_PIXEL indicates unwanted pixels +
//             if QA_RADSAT indicates saturated pixels
// Either = 0 (good), 1 (one of two masking conditions), 2 (both conditions)
// Adapted from: Examples/Cloud Masking/Landsat8 Surface Reflectance
function addMask(image) {
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Cirrus
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).neq(0);
  var saturationMask = image.select('QA_RADSAT').neq(0);
  var mask = qaMask.add(saturationMask);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBands, null, true)
              .addBands(mask.rename('mask'));
}

// Function to calculate NDVI and add it as a band
function calcNDVI(im) {
    var ndvi = im.normalizedDifference(['SR_B5','SR_B4']).rename('ndvi');
    return im.addBands(ndvi);
}

// Function to grab date from image and add it as a band
function addDates(im) {
  var date = im.date();
  return im.addBands(ee.Image([date.getRelative('day', 'year'),
                                date.get('year')])
                        .rename(['doy', 'year'])).float();
}

// Function to sample an image in each region of supplied geometry
function sampleRegions (im) {
    return(im.reduceRegions(features, ee.Reducer.mean(), 30)
           .copyProperties(im));
}



// Feature ====================================================================
var features = ee.FeatureCollection(
        [ee.Feature(ee.Geometry.Point([-109.96, 53.853]),
        {"id": "0"}),
        ee.Feature(ee.Geometry.Point([-109.94, 53.852]),
        {"id": "1"}),
        ee.Feature(ee.Geometry.Point([-109.95, 53.851]),
        {"id": "2"}),
        ee.Feature(ee.Geometry.Point([-109.93, 53.854]),
        {"id": "3"}),
        ee.Feature(ee.Geometry.Point([-109.92, 53.853]),
        {"id": "4"}),
        ee.Feature(ee.Geometry.Point([-109.94, 53.852]),
        {"id": "5"}),
        ee.Feature(ee.Geometry.Point([-109.93, 53.851]),
        {"id": "6"})]);



// Images ======================================================================
var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2');



// Filter ======================================================================
l8 = l8.filterDate('2015-01-01', '2020-01-01')
       .filterBounds(features);



// Process images ==============================================================
// Mask clouds and calculate NDVI
l8 = l8.map(addMask)
       .map(addDates)
       .map(calcNDVI);



// Sample images ===============================================================
var sample = l8.map(sampleRegions)
               .flatten();



// Export ======================================================================
Export.table.toDrive({
  collection: sample,
  description: 'sampled-ndvi-Landsat-LC08-T1-L2',
  selectors: ['id', 'ndvi', 'mask', 'doy', 'year']
});